Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells
نویسندگان
چکیده
Septin family proteins oligomerize through guanosine 5'-triphosphate-binding domains into core heteromers, which in turn polymerize at the cleavage furrow of dividing fungal and animal cells. Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. In this study, we developed protocols for visualization of authentic higher-order assemblies using tagged septins to effectively replace the endogenous gene product within septin core heteromers in human cells. Our analysis revealed that septins assemble into microtubule-supported, disk-like structures at the plasma membrane. In the absence of cell substrate adhesion, this is the predominant higher-order arrangement in interphase cells and each of the seven to eight septin family members expressed by the two analyzed cell types appears equally represented. However, studies of myeloid and lymphoid cell model systems revealed cell type-specific alterations of higher-order septin arrangements in response to substrate adhesion. Live-cell observations suggested that all higher-order septin assemblies are mutually exclusive with plasma membrane regions undergoing remodeling. The combined data point to a mechanism by which densely arranged cortical microtubules, which are typical for nonadhered spherical cells, support plasma membrane-bound, disk-like septin assemblies.
منابع مشابه
Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers
Septin-family proteins assemble into rod-shaped heteromeric complexes that form higher-order arrangements at the cell cortex, where they serve apparently conserved functions as diffusion barriers and molecular scaffolds. There are 13 confirmed septin paralogues in mammals, which may be ubiquitous or tissue specific. Septin hetero-oligomerization appears homology subgroup directed, which in turn...
متن کاملP-121: Assessment of Microtubule and Nuclear Status at Different Intervals of Bovine In Vitro Oocyte Maturation
Background: Mammalian oocyte undergoes a series of structural nuclear modulations during maturation in order to obtain full competence to support fertilization and early embryonic development. Microtubules are major cytoskeleton components and have pivotal modulators for chromosomal movement, and it has been shown that partial or immature spindle organization may compromise correct ploidy of th...
متن کاملEpithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cell...
متن کاملSeptin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals
The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and tem...
متن کاملThe mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis.
Cytokinesis in animal cells involves the contraction of an actomyosin ring formed at the cleavage furrow. Nuclear division, or karyokinesis, must be precisely timed to occur before cytokinesis in order to prevent genetic anomalies that would result in either cell death or uncontrolled cell division. The septin family of GTPase proteins has been shown to be important for cytokinesis although lit...
متن کامل